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Abstract
SU(N) quantum spin systems may be realized in a variety of physical systems
including ultracold atoms in optical lattices. The study of such models also
leads to insights into possible novel quantum phases and phase transitions of
SU(2) spin models. Here we use Gutzwiller projected fermionic variational
wavefunctions to explore the phase diagram and correlation functions of SU(N)

quantum spin models in the self-conjugate representation. In one dimension, the
ground state of the SU(4) spin chain with Heisenberg bilinear and biquadratic
interactions is studied by examining instabilities of the Gutzwiller projected
free fermion ground state to various broken symmetries. The variational phase
diagram so obtained agrees well with exact results. The spin–spin and dimer–
dimer correlation functions of the Gutzwiller projected free fermion state with
N flavours of fermions are in good agreement with exact and 1/N calculations
for the critical points of SU(N) spin chains. In two dimensions, the phase
diagram of the antiferromagnetic Heisenberg model on the square lattice is
obtained by finding instabilities of the Gutzwiller projected π -flux state. In
the absence of biquadratic interactions, the model exhibits long-range Néel
order for N = 2 and 4, and spin Peierls (columnar dimer) order for N >

4. Upon including biquadratic interactions in the SU(4) model (with a sign
appropriate to a fermionic Hubbard model), the Néel order diminishes and
eventually disappears, giving way to an extended valence bond crystal. In the
case of the SU(6) model, the dimerized ground state melts at sufficiently large
biquadratic interaction, yielding a projected π -flux spin liquid phase which
in turn undergoes a transition into an extended valence bond crystal at even
larger biquadratic interaction. The spin correlations of the projected π -flux
state at N = 4 are in good agreement with 1/N calculations. We find that
the state shows strongly enhanced dimer correlations, in qualitative agreement
with recent theoretical predictions. We also compare our results with a recent
quantum Monte Carlo study of the SU(4) Heisenberg model.
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1. Introduction

Quantum spin models provide a setting in which one can explore interesting strong correlation
physics that arises from quantum fluctuations. Such fluctuations can be large enough, in certain
cases, to melt any form of classical order, leading to various exotic spin liquid states [1, 2].
A class of spin liquids of particular interest are those that support gapless excitations. Apart
from experimental questions regarding their possible existence [3–7], it is interesting to enquire
under what circumstances such gapless spin liquids can arise in two or more dimensions. The
Bethe ansatz solution of the spin-1/2 Heisenberg antiferromagnet chain is a well-known exact
example of such a gapless spin liquid in one spatial dimension, but much less is known about
higher dimensions. This question was raised in the early days of high-Tc theory, as Anderson’s
original proposal for a resonating valence bond (RVB) spin liquid had a Fermi surface of
gapless spinon excitations [8, 9].

One route to accessing the physics of some of these spin disordered states is by
generalizing the usual SU(2) spin models to SU(N) models. As N increases from 2 to larger
values, quantum spin fluctuations are enhanced, weakening any spin order. Such models can
accommodate several types of spontaneously broken symmetries: spin order, spin dimerization,
and charge-conjugation symmetry breaking [10]. We note that models of SU(N) quantum
spins are not purely theoretical exercises: it may be possible to realize them with ultracold
atoms in optical lattices [11–13], in quantum dot arrays [14], or as special points in models with
spin and orbital degrees of freedom [15], although the effects of SU(N) symmetry breaking
terms need to be carefully examined in each case.

Of the many possible representations of SU(N), we focus on a particular self-conjugate
representation with N/2 fermions on each site, each with a different flavour due to the Pauli
exclusion principle [16, 17]. In this representation, the generators of the SU(N) algebra may be
expressed in terms of the fermion creation and annihilation operators as Sα

β (i) ≡ f †α
i fiβ − 1

2δα
β .

The constraint Sα
α (i) = 0 thus holds in the subspace with exactly N/2 fermions on each site,

and consequently there are the correct number (N2 − 1) of special unitary generators. The
representation is called ‘self-conjugate’ because, upon making a particle–hole transformation,
the same representation, namely one with N/2 fermions, is obtained. All representations
of SU(2), regardless of the total spin, are automatically self-conjugate, but only certain
representations of SU(N > 2) are self-conjugate. An advantage of the self-conjugate
representation is that it is easy to construct SU(N) invariant Hamiltonians that retain all of
the symmetries of the underlying lattice, and hence mimic SU(2) models in this regard. For
more details, including the Young tableau classification, see [10].

In the N → ∞ limit, saddle point solutions of the fermionic path integral are exact and
the operator constraint Sα

α (i) = 0 can be replaced by the much simpler mean-field constraint
〈Sα

α (i)〉 = 0. These large-N SU(N) antiferromagnets cannot break global SU(N) spin
symmetry; some possess ground states that do not break any lattice symmetry and thus furnish
mean-field caricatures of a class of spin liquids. Going from N = ∞ down to the physical limit
of N = 2 requires the inclusion of fluctuations about the mean-field state, and the problem can
be recast in the form of gauge fields strongly coupled to fermionic matter. Progress toward
calculating the properties of such a field theory relies on a 1/N expansion, and some results
have been obtained in this manner for one-and two-dimensional models [18–30], though not
without controversy. There is also good reason to be concerned about the reliability of such an
expansion in the physically important SU(2) case, as N is of course no longer large. Density-
matrix renormalization-group (DMRG) calculations for SU(N) quantum antiferromagnets [14]
and Hubbard models [31] provide some confirmation of the analytical understanding of one-
dimensional (1D) chains. In two dimensions (2D) there is a very interesting quantum Monte
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Carlo (QMC) study of SU(N) quantum antiferromagnets by Assaad [32] that we discuss
further in section 3.

A different approach to the study of SU(N) spin models also begins with mean-field states
that satisfy the average constraint 〈Sα

α (i)〉 = 0, but then the operator constraint Sα
α (i) = 0

is implemented via an on-site Gutzwiller projection. The Gutzwiller projection operator
forces the number of fermions to be precisely N/2 at each site. For N = 2, and denoting
as usual the two spin states by ↑,↓, the projection operator takes the well-known form
PG = ∏

i(1 − ni↑ni↓). The resulting many-body wavefunction thus lives in the correct
Hilbert space for SU(N) antiferromagnets and serves as a variational approximation to the
spin ground state. For N = ∞, a probabilistic central limit argument shows that the Gutzwiller
projection is unimportant and gives the same result as the mean-field state. For any finite
N , projection is crucial and nontrivial; the advantage of the approach is that the projection
constraint can be handled numerically exactly with the variational Monte Carlo algorithm. Thus
the generalization to SU(N) provides a rationale for understanding the Gutzwiller procedure:
mean-field wavefunctions obtained in the large-N limit are then modified by projection to
account for the occupancy constraint at finite-N . The approach however suffers from the
criticism that it is biased and restricted by the choice of the variational mean-field state (or
equivalently the preprojected wavefunction) and that local Gutzwiller projection may not
account for all of the important correlations.

The Gutzwiller variational approach has been applied to a variety of SU(2) quantum
antiferromagnets; see for instance [33–41]. Many of these studies support the possibility of
2D spin liquids with gapless spin excitations. One advantage of extending the Gutzwiller
variational approximation to SU(N) quantum antiferromagnets is that the approximation
becomes more accurate as N increases. Indeed, since the gauge theory approach and the
variational approach reduce to the same (exact) mean-field theory at N = ∞ but suffer different
criticisms at finite N , it is interesting to compare results from both approaches as N is decreased
systematically from N = ∞ down to N = 2. The existence of some exact results for SU(N)

quantum antiferromagnets in one and higher spatial dimensions [10] provides valuable checks
not available in the SU(2) case. So motivated, we numerically explore in this paper Gutzwiller
wavefunctions for SU(N) spin models in the self-conjugate representation with Heisenberg
bilinear and biquadratic interactions. In section 2 we compare the variational approach in 1D
with exact results and analytical 1/N calculations. Section 3 focuses on the 2D square lattice.
Comparison is made with 1/N calculations and with Assaad’s quantum Monte Carlo results.
We summarize and discuss the implications of our results in section 4. For the reader interested
in the main results, phase diagram figures in the different sections provide a quick overview of
our conclusions.

2. One dimension

We begin with a study of SU(N) spin models in 1D. The existence of a reliable phase diagram
for the SU(4) spin chain [10] provides a valuable check on the quality of the variational
wavefunctions. We first define the model and then compare the phase diagram of the SU(4)

chain as obtained with the variational wavefunctions to the known result. Then we examine
various correlation functions calculated from the Gutzwiller projected SU(N) Fermi gas
wavefunction and compare the exponents thus obtained to exact analytical results for the critical
point in the SU(N) spin chain.
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2.1. Models

For N = 2, the usual Heisenberg model is the only nearest-neighbour Hamiltonian that is both
SU(2) symmetric and translationally invariant. In 1D we may write it as:

H2 =
∑

i

Sα
β (i)Sβ

α (i + 1), (1)

where the trace Tr[S(i)S(i + 1)] is simply a rewriting of the vector form H2 = 2
∑

i
	Si · 	Si+1

with standard spin operators 	Si = 1
2 f †μ

i 	σν
μ fνi in terms of the matrix form of the spin operators.

It is well known that the model has no long-range order, but rather exhibits algebraically
decaying antiferromagnetic spin correlations up to a mutiplicative logarithmic factor.

For N = 4, the most general translationally invariant nearest-neighbour Hamiltonian can
have an additional biquadratic spin–spin interaction term:

H4 = cos θ
∑

i

Sα
β (i)Sβ

α (i + 1) + sin θ

4

∑

i

[Sα
β (i)Sβ

α (i + 1)]2, (2)

where −π < θ � π parametrizes the relative strength of the Heisenberg and biquadratic
terms. Whereas the usual bilinear Heisenberg interaction exchanges two fermions on adjacent
sites, the biquadratic term exchanges two pairs of fermions. The antiferromagnetic region of the
phase diagram of H4 is generically gapped [17, 10, 42]. The Lieb–Schultz–Mattis theorem then
says that these gapped phases must break translational symmetry in one way or another [43].
Tuning θ leads to a variety of phases and phase transitions. For instance, positive θ frustrates
dimerization, and when θ becomes sufficiently large, the dimerized phase is eliminated.

2.2. Phase diagram of the SU(4) model

The phase diagram of the SU(4) model, equation (2), was obtained in [10] and is shown in
the inset to figure 1. It displays four phases: a fully polarized ferromagnet (FM), a dimerized
phase (D), a phase with broken charge-conjugation symmetry (C), and, finally, a phase with
broken translational symmetry and a six-site unit cell (six-fold). The D to FM transition and
the six-fold to FM transition are both first order, while the D to C and the C to six-fold state
transitions are both continuous. We now describe these phases more precisely and present the
results of calculations based upon the corresponding variational wavefunctions.

FM, ferromagnet. The ground state of a fully polarized ferromagnet breaks the global SU(4)

spin symmetry but no lattice symmetries. A simple and exact ground state wavefunction may
then be constructed by placing any two of the four fermion flavors on the lattice, each site
having the same two flavours. All other ground states can be obtained by global SU(4) rotations
of the state. Because the Pauli exclusion principle prevents any fermion hopping in the FM
state, it is straightforward to show that 〈Sα

β (i)Sβ
α (i + 1)〉 = 〈[Sα

β (i)Sβ
α (i + 1)]2〉 = 1, so that

the exact ground state energy per site is

eexact
FM = cos θ + 1

4 sin θ. (3)

D, dimerized. The dimerized phase is a spin gapped phase with a two-fold ground state
and a nonzero order parameter δD = 〈Sα

β (i)Sβ
α (i + 1)〉 − 〈Sα

β (i − 1)Sβ
α (i)〉 that takes on

equal positive/negative values in the two ground states and is zero in a state with no broken
symmetries. This phase does not break the SU(4) spin symmetry, but does break lattice
translations (the ground state is invariant only under translation by two lattice spacings) and
inversion symmetry about a lattice site. In order to obtain a wavefunction for this phase, we
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Figure 1. Variational calculation of the ground state energies of dimerized D and charge-
conjugation broken (C) phases of the model Hamiltonian H4 in equation (2). Both broken
symmetries apparently vanish around θ = 0.42(3), hinting at a possible continuous phase transition
with a gapless critical point that is reasonably well described by the Gutzwiller projected four-
flavour Fermi gas wavefunction (see text). Inset: the full phase diagram, including the ferromagnetic
and six-fold symmetry broken phases, of the SU(4) spin chain with biquadratic interactions. The
exact location of the D–C transition is at θ = tan−1(1/2) ≈ 0.4636. The point at which the C
extended valence bond product state is an exact ground state is θ = tan−1(2/3).

consider a mean-field fermion Hamiltonian with alternating hopping strengths (1 + δ) and
(1 − δ) on successive bonds:

H 0
D = −

∑

i,α=1...4

(1 + δ(−1)i)
[

f †α
i fi+1,α + h.c.

]
. (4)

This starting Hamiltonian has the following favourable features: it is SU(4) symmetric, has
a gap to fermion excitations (and thus a gap to spin excitations in mean-field theory), and
breaks the same lattice symmetries as the dimerized phase. In addition, the ground state of the
Hamiltonian satisfies 〈Sα

α (i)〉0 = 0, since it is particle–hole symmetric. The ground state of
this mean-field model is simply a product of four Slater determinants, one for each flavour of
fermion, with the lowest half of the single-particle states filled. Gutzwiller projecting the mean-
field ground state leads to a variational ansatz for the dimerized phase of the spin model, with δ

being the variational parameter that we optimize by minimizing 〈H4〉 to find the best variational
ground state. We find that the dimerization strength, defined in the mean-field problem via the
variational parameter δ, is nonzero at θ = 0, indicating that the SU(4) Heisenberg model
has a dimerized ground state. With increasing θ , the optimal δ decreases and vanishes around
θ ≈ 0.41(3), in reasonably good agreement with the exact result θc = tan−1(1/2) ≈ 0.4636.
We also find that δ increases in magnitude for negative θ and approaches unity at large negative
θ , indicating that dimerization is nearly complete.

C, Charge-conjugation symmetry broken. The model H4 is invariant under the global particle–
hole transformation fiα ↔ f †α

i and thus possesses charge-conjugation (C) invariance. In

5
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terms of the spin operators, the transformation takes the form Sα
β (i) → −Sβ

α (i). The C phase
corresponds to a phase in which this symmetry is spontaneously broken. This phase does not
break the SU(4) spin symmetry, but does break lattice symmetries as the ground states are
invariant only under translation by two sites, and they break inversion symmetry about the
bond centres. It is characterized by an order parameter made up of a triple product of spins:
〈Tr(Si Si+1 Si+2)〉. An extreme caricature of the state (analogous to the product state of nearest-
neighbour dimers) is an extended valence bond solid of site-centred SU(4) singlets formed
from two flavours of fermions at a central site combined with a fermion from each of the two
flanking sites. This product state is an exact ground state of model H4 at the special point
θ = θ∗ = tan−1(2/3).

The mean-field Hamiltonian we use to obtain the preprojected wavefunction for the C-
breaking state is

H 0
C = −

∑

i,α=1...4

[
f †α
i fi+1,α + h.c.

]
− t∗ ∑

i,α=1...4

(−1)i
[

f †α
i fi+2,α + h.c.

]
. (5)

Nonzero t∗ breaks the global particle–hole symmetry,, since it connects sites belonging to the
same sublattice. The alternating sign of t∗ on the odd and even sublattices breaks inversion
symmetry about bond centres of the lattice, and generates a gap in the mean-field fermion
spectrum (and thus a gap to spin excitations in the mean-field theory). Finally, the Hamiltonian
is invariant under a global particle hole transformation followed by translation by one lattice
spacing, and hence satisfies 〈Sα

α (i)+ Sα
α (i +1)〉0 = 0. We can further modify the wavefunction

to include a staggered chemical potential in order to obtain 〈Sα
α (i)〉0 = 0 at each site. However,

since the mean-field state is projected into the correct Hilbert space that satisfies Sα
α (i) = 0

exactly, we choose to work with the simpler mean-field Hamiltonian without this staggered
chemical potential (we have checked that including the staggered chemical potential does not
affect the results in any significant quantitative manner).

A check on the quality of this variational wavefunction for the C phase is provided by
a comparison between the variational and exact ground state energy per site at the point
θ∗ = tan−1(2/3), where a C product is the exact ground state, while the variational ground state
exhibits nonzero t∗. The variational ground state energy at this point, Evar(θ

∗) = −0.6934(10),
is close to the exact result Eexact(θ

∗) = − 5
2
√

13
≈ −0.693 37 . . ..

Turning to general θ , we find that the variational parameter t∗ is zero for θ < 0.42(2),
and increases monotonically for θ > 0.42(2). The θ at which t∗ first becomes nonzero thus
seems to coincide (within numerical error) with the point where the dimerization parameter δ

vanishes (θ = 0.41(3)).

Six-fold degenerate state. The phase diagram of the SU(4) spin chain has two special points
with enlarged SU(6) symmetry, and a gapped six-fold degenerate phase is associated with one
of these points [10]. We may understand the origin of the six-fold degeneracy as follows: view
the six possible states of the self-conjugate SU(4) representation (two distinct flavours chosen
out of four possible ones) on each site as the six states of the fundamental representation
of SU(6). Six such states, taken from six adjacent sites, can be combined into a SU(6)

singlet. The resulting spin-gapped ground state breaks translational symmetry with a six-site
periodicity. Unfortunately we have not yet found a way to express the state in terms of the
Slater determinants of single-particle wavefunctions; a proper description likely needs some
form of pairing to capture the above physics. We therefore do not focus on this phase at present,
postponing it to future study.
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D–FM transition. We know from the phase diagram of [10] that there is a first-order D to
FM transition. Since the dimerization order parameter appears to increase monotonically at
larger negative values of θ , we may estimate the approximate location of the D–FM transition
by comparing the energy of the FM state with a fully dimerized state (δ = 1) that is just a
product of nearest-neighbour singlets on alternate bonds. The energy of this variational state
can be found knowing that, for neighbouring uncorrelated sites (not on the same singlet bond),
〈Sα

β (i)Sβ
α (i + 1)〉 = 0 and 〈[Sα

β (i)Sβ
α (i + 1)]2〉 = 5/3, while for neighbouring spins that form

the singlet bond, 〈Sα
β (i)Sβ

α (i + 1)〉 = −5 and 〈[Sα
β (i)Sβ

α (i + 1)]2〉 = 25. This leads to

eδ=1
D = − 5

2 cos θ + 10
3 sin θ. (6)

Comparing this energy with eexact
FM , we find the variational estimate of the angle at which the

dimer state becomes unstable to ferromagnetism to be θvar
D,FM = tan−1(84/74) ≈ −0.73π ,

which is very close to the exact result θ exact
D−FM = −3π/4. The error in the variational estimate

of the transition angle is consistent with the fact that, while the energy of the ferromagnet is
obtained exactly, the energy of the dimer product state with eδ=1

D is only an upper bound to the
true ground state energy of the dimerized state at the transition.

C–D transition. The numerical coincidence of the values of θ at which δ and t∗ vanish
indicates that the transition between the D and C phases could be continuous even within the
variational approach, as in the rigorous phase diagram. We have not studied wavefunctions
with coexisting t∗ and δ broken symmetry parameters and cannot rule out the possibility that
such a variational ansatz may have lower energy in the region close to the transition. We
also cannot rule out the possibility that the variational approach leaves a very small window
where t∗ = δ = 0, giving rise to a gapless phase. Assuming however that neither of these
possibilities is realized, and that the transition between the two phases is continuous even within
the variational approach, the projected half-filled Fermi gas state (with δ = t∗ = 0 in the mean-
field Hamiltonian) is a good candidate for the critical point describing the C–D transition. We
turn next to a study of correlation functions of this wavefunction.

2.3. Correlation functions for the projected Fermi gas at various N

As the phase diagrams of the SU(2) and SU(4) spin chains are known [10], these provide
good test cases for the method. At the critical point in the SU(N) chain, the exponents of
the spin–spin and dimer–dimer correlation functions follow directly from equations (4.10) and
(4.12) of [10], once the scaling dimension of the level k = 1 Wess–Zumino–Witten (WZW)
field g is known. (The contribution of the currents JL and JR in equation (4.10) to the spin–
spin correlation function is subleading, as the currents have dimension 1, greater than that of
the g-field.) Reference [44] gives the dimension of a tower of WZW operators labelled by the
integer a:

dim(g) = h + h̄

h = h̄ = a(N − a)

2N
, a = 1, 2, . . . , N,

(7)

with a = 1 corresponding to the operator with smallest nontrivial dimension. The conformal
charge c = N − 1 is correct, as it equals the number of fermions in the corresponding SU(N)

Hubbard model minus 1 due to the freezing out of charge fluctuations, leaving only N − 1 spin
excitations. Now the exponent of the staggered part of the spin–spin correlation function, as
well as the dimer–dimer correlation function, is twice the dimension of g, yielding 2 − 2/N .
This exponent reduces to the free fermion value of 2 in the N → ∞ limit, and to 1 in the usual
SU(2) Heisenberg chain, as it should.

7
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How do correlation functions behave in the projected Fermi gas wavefunction for general
N? For N = 2, the Gutzwiller projected Fermi gas wavefunction at half-filling is the exact
ground state of the Heisenberg model with 1/r 2 interactions [45, 46]. It also correctly describes
correlation functions of the ground state of the J1–J2 Heisenberg model at the critical point
between the gapless spin fluid phase and the dimerized phase [47]. The spin–spin correlations
of this wavefunction have been computed exactly [48, 49], but we are not aware of an exact
result for its dimer–dimer correlations. We present numerical results for both correlations
below. For N = 4, given the possibility that the projected free Fermi gas wavefunction at
half-filling could be a candidate for the C–D transition, we study spin–spin and dimer–dimer
correlation functions of the wavefunction and compare them to exact results from the field
theory for this transition. We also examine the correlation functions in the projected Fermi gas
wavefunction for N > 4, as such wavefunctions may describe multicritical points in the phase
diagram of generalized SU(N > 4) spin models.

Spin–spin correlations. At N = ∞, the long-distance behaviour of the spin correlation
function Css(x) = 〈Sα

β (0)Sβ
α (x)〉 is given by mean-field theory, Css(x) ∼ (−1/x2+(−1)x/x2).

In the opposite limit, N = 2, the spin correlations of the projected Fermi gas wavefunction have
been calculated exactly by Gebhard and Vollhardt [48, 49] to be Css(x) = (−1)x 3Si(π x)

2π x , where

Si(x) is the sine integral function Si(x) = ∫ 1
0 dy sin(xy)/y. The long-distance decay of the

correlator is Css(x) ∼ (−1)x

x − 2
π2x2 . Thus the staggered spin correlations decay more slowly

for N = 2 than they do in mean-field theory, while the uniform component continues to decay
as 1/x2.

Incorporating gauge fluctuations perturbatively [20, 21] modifies the long-distance spin
correlations to:

Css(x) ∼ A(−1)x

xαs
− B

xβs
. (8)

The O(1/N) result for the exponents are βs = 2 and αs = 2 − 2/N ; rather surprisingly, the
latter exponent agrees with the exact result. Thus, gauge fluctuations enhance the staggered
spin correlations over the mean-field result, while the uniform component decays at the same
rate ∼ 1/x2 as the mean-field result.

In order to extract the exponent αs(N) from the numerical calculations on the Gutzwiller
projected wavefunction for general N , we assume that the correlations are of the form

Css(x) = As(−1)x

xαs
− Bs

x2
. (9)

In order to carry out finite size scaling, we consider the function

C(L/2) = (−1)L/2Css(L/2) = As

(L/2)αs
− Bs(−1)L/2

(L/2)2
. (10)

From this equation we can obtain the staggered and uniform components of the spin correlations
via

Cstag(L) = 1
2

[
C(L/2) + 1

2 (C(L/2 + 1) + C(L/2 − 1))
]

(11)

Cunif(L) = 1
2

[
C(L/2) − 1

2 (C(L/2 + 1) + C(L/2 − 1))
]
. (12)

To leading orders in 1/L, these functions take the form

Cfit
stag(L) ≈ As

(L/2)αs
+ Asαs(1 + αs)

(L/2)2+αs
+ us

(L/2)4
(13)

Cfit
unif(L) ≈ Bs

(L/2)2
− Asαs(1 + αs)

L2(L/2)αs
+ vs

(L/2)4
. (14)

8
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Figure 2. Logarithm of the staggered and uniform components of the spin–spin correlation function
at distance L/2 plotted versus ln(L), for the projected free Fermi gas with N -flavours (L denotes
the number of sites of the spin chain). The uniform spin correlations appear to decay as 1/r2 for
all N . The staggered spin correlations are enhanced at smaller N , and decay with the indicated
exponents (see text for details).

We also obtain the staggered and uniform components of the spin correlation function data
for various L using equation (12). We first fit the staggered correlations using the parameters
As, us, and αs. Next we use this value of αs and the parameters Bs and vs to fit it to the uniform
component of the spin correlations. The fits are shown in figure 2 for both the uniform and
staggered components for cases N = 2, 4, 6, and 8. This leads to the following estimates for
various N : αs(2) = 0.996(4), αs(4) = 1.37(2), αs(6) = 1.63(2), and αs(8) = 1.74(2). These
values are in remarkably good agreement with the exact value of the spin–spin correlation
function exponent at the critical points of these chains, which for N = 4 lies at the continuous
C–D transition. We also find that the fitted value of the amplitude ratio As/Bs tends to unity as
N → ∞, consistent with mean-field theory. At present, we are unable to determine if the small
differences between the exact results and the wavefunction calculations of αs(4) and α(6) are
real or an artefact of working with chains of less than 100 sites.

Dimer–dimer correlations. We have similarly evaluated the dimer–dimer correlations in the
projected N-flavour Fermi gas in 1D, namely Cdd(x) = 〈Sα

β (0)Sβ
α (1)Sμ

ν (x)Sν
μ(x + 1)〉. The

finite size scaling of this correlation function is analysed in a manner similar to that of the
spin–spin correlation function, except for one significant difference. We fit to Cdd(x) =
Ad(−1)x/xαd , dropping the uniform component that decays much more rapidly, so that
we cannot extract its behaviour reliably compared to the staggered component. The finite

9



J. Phys.: Condens. Matter 19 (2007) 125215 A Paramekanti and J B Marston

Figure 3. Logarithm of the alternating component of the dimer–dimer correlation function at
distance L/2 plotted versus ln(L), for the projected free Fermi gas with N -flavours (L denotes
the number of sites of the spin chain). The decay exponents are indicated (see text). The decay
of the uniform correlation is much faster and the corresponding exponents have not been obtained
reliably.

size scaling plots of the correlation function are shown in figure 3, along with estimates
of αd for various N . We find αd(2) = 1.02(5), αd(4) = 1.0(1), αd(6) = 1.4(2), and
αd(8) = 1.5(2). The projected Fermi gas wavefunction thus has strongly enhanced alternating
dimer correlations in addition to enhanced staggered spin correlations. For N = 2, it is in
agreement with the exact result αd = 2 − 2/N . For N > 2, the variational wavefunction
exponents αd(N) < αs(N) (most significantly for N = 4), while exact results suggest
αs(N) = αd(N) = 2 − 2/N . Thus, the projected Fermi gas wavefunction does not quite
capture this aspect of the C–D critical point at N = 4, although it does capture the existence
of strongly enhanced staggered spin and alternating dimer correlations, decaying in power-law
fashion with anomalous exponents. Having shown that the variational wavefunctions provide a
reasonably good description of SU(N) spin models in 1D, we next turn to 2D examples.

3. Two-dimensional square lattice

Buoyed by the successful description of the SU(N) spin chains with variational wavefunctions,
we now apply the same methodology to the study of 2D SU(N) spin models. Much less is
known reliably about the phase diagrams of such models at finite-N . An interesting gapless spin
liquid discovered some time ago in the large-N limit of the self-conjugate SU(N) Heisenberg

10
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model with biquadratic interactions to thwart dimerization is the π -flux state [16, 17]. At
N = ∞, where projection to exactly N/2 fermions per site does nothing to the mean-field
state, the π -flux state corresponds to the ground state of fermions (at half-filling) hopping on
the square lattice while sensing a (spontaneously generated) fictitious magnetic flux of π per
elementary plaquette [16]. It supports gapless linearly dispersing Dirac fermion excitations
about two nodes in the reduced Brillouin zone. Spin-1 excitations, which are bilinears of the
Dirac fermions, are therefore gapless at the wavevectors spanning the Dirac nodes: (π, π),
(π, 0), (0, π), and (0, 0). For the case of the ordinary nearest-neighbour SU(2) Heisenberg
antiferromagnet on the square lattice, Gutzwiller projecting this mean-field wavefunction leads
to a variational ground state with power-law decay of staggered spin correlations (as there is
no long-range magnetic order) and an energy (1/2)〈Sα

β (i)Sβ
α (i + δ̂)〉 ≈ −0.319 per bond. The

true ground state of the Heisenberg model is known to be Néel ordered, with a spin moment of
about 60% of the classical value, and (1/2)〈Sα

β (i)Sβ
α (i + δ̂)〉 ≈ −0.3346 per bond. Since the

π -flux state is close to the true ground state, both energetically and in its display of (quasi) long-
range antiferromagnetic correlations, we focus on the part of the phase diagram of the SU(N)

Heisenberg model (with possible additional biquadratic interactions) that is close to that of the
π -flux phase. More precisely, we investigate instabilities of the π -flux state towards various
translational- and SU(N)-symmetry breaking orders. This point of view was advocated in
earlier studies of the N = 2 case [35, 18], and in more recent work by Ghaemi and Senthil [30].

We begin with the SU(N) Heisenberg model in the absence of biquadratic interactions,
and compare the resulting variational phase diagram with that from a recent quantum Monte
Carlo (QMC) study of the same model [32]. We then turn to the nature of the spin and dimer
correlations of the SU(4) projected π -flux state and compare the correlation functions to results
from recent analytical large-N studies [27] and QMC calculations [32]. Finally, we examine
the variational phase diagram of the SU(4) and SU(6) models with a biquadratic interaction
added to thwart instabilities. For N = 6, we find a (small) window of parameters where the
projected π -flux state appears to be stable towards Néel, spin Peierls and broken-C ordering.
Our work thus hints at the existence of a stable SU(6) gapless spin liquid phase in a simple
two-dimensional microscopic spin model.

3.1. Phase diagram of the SU(N) Heisenberg model

The Hamiltonian of the 2D antiferromagnetic SU(N) Heisenberg model is

H2D =
∑

〈i, j〉
Sα

β (i)Sβ
α ( j), (15)

where 〈i, j〉 denotes nearest-neighbour sites on the square lattice. As discussed above, the
projected π -flux wavefunction with N/2 fermions at each site is an attractive starting point to
describe the ground state of the model. The mean-field ansatz for the π -flux phase is

Hπ−flux =
∑

〈i j〉

(
eiai j f †σ

i f jσ + h.c.
)

(16)

with a gauge choice of ai,i+x̂ = π
4 (−1)xi +yi and ai,i+ŷ = −π

4 (−1)xi +yi . Here we examine
the instability of the variational state obtained by Gutzwiller projecting the ground state of this
mean-field Hamiltonian towards Néel and spin Peierls ordering. (We have also checked that
there are no instabilities to time-reversal symmetry broken states or states with broken charge-
conjugation symmetry. These wavefunctions have higher energy, so the ground states exhibit
only Néel or spin Peierls order.)

To account for the possibility of Néel ordering, we modify the mean-field Hamiltonian with
the addition of a SU(N) symmetry breaking perturbation that favours two-sublattice ordering,

11



J. Phys.: Condens. Matter 19 (2007) 125215 A Paramekanti and J B Marston

Figure 4. The two candidate spin Peierls ground states of the 2D SU(N) spin models explored in
this paper. The thick lines indicate bonds with a larger singlet expectation value |〈Sα

β (i)Sβ
α ( j)〉|.

with any chosen set of N/2 flavours favoured on one sublattice, and the remaining N/2 flavours
on the other sublattice:

HNeel = Hπ−flux − hN
∑

i,σ�N/2

(−1)xi +yi f †
iσ fiσ + hN

∑

i,σ>N/2

(−1)xi +yi f †
iσ fiσ . (17)

In order to study spin Peierls ordering, we focus on two different types of broken symmetry
states: ‘dimer order’ (more precisely, columnar dimer order) and ‘box order’ (also called
plaquette order). In the dimer state, spins prefer to form singlets on nearest-neighbour bonds,
and the bonds organize as shown in figure 4(a). Three other equivalent, but distinct, states are
obtained by x-translations and π/2 rotations of the displayed pattern. The mean-field ansatz
for the preprojected wavefunction of the dimer state is obtained by modulating ti j such that
ti,i+x̂ = 1 + δD(−1)xi and ti,i+ŷ = 1. The box state has a different broken symmetry; the
strength of singlet bonds is shown in figure 4(b). Three other equivalent box states are obtained
by x- and y-translations of the displayed pattern. For the box state, we modulate ti j such that
ti,i+x̂ = 1 + δB(−1)xi and ti,i+ŷ = 1 + δB(−1)yi .

The mean-field box and dimer states have a single-particle gap to fermionic excitations
and thus also a spin gap. These spin Peierls ordered states as well as the Néel state are invariant
under a particle–hole transformation (followed by a global SU(4) spin rotation in the case of the
Néel state), and thus are at half-filling. We project these mean-field ansatz to obtain variational
spin wavefunctions for the Heisenberg model. The phases of the SU(N) Heisenberg model are
then obtained by looking for the state with the lowest variational energy. As summarized in
figure 5, we find that the Néel ordered state has the lowest energy for N = 2 and 4, while the
dimer state (i.e. columnar dimer) state has the lowest energy for N > 4. For N = 2, this result
is in agreement with other numerical work [50, 51, 32]. The presence of spin Peierls order for
large values of N is in agreement with 1/N calculations [16]. The same pattern of (columnar)
dimer order was also predicted for various representations of SU(N) antiferromagnets in large-
N calculations by Read and Sachdev [52, 53]; these predictions have received some numerical
support [54], with Néel order reported for N � 4 and dimer order for N > 4, identical to the
phase diagram in figure 5.
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Figure 5. Energy minimization plots for even N = 2–10. The x-axis is the variational parameter
appropriate to the broken symmetry being studied. The y-axis is the (dimensionless) energy (〈H2D〉
for the model of equation (15)). We conclude that the SU(N) Heisenberg model exhibits Néel order
for N = 2 and 4, and spin Peierls ordering of the columnar dimer type for N > 4.

3.2. Correlation functions of the projected SU(4)π -flux state

To make contact with a recent QMC study of the SU(4) Heisenberg model [32], we turn now to
the spin–spin and dimer–dimer correlations of the projected π -flux wavefunction. The analysis
of these correlations is done in a manner similar to that in 1D, except that we focus only on the
strong nonzero-wavevector component (near (π, π) for the spin order and near (π, 0) for the
dimer correlations) and ignore the uniform components. The uniform component of the spin–
spin correlation in 2D is expected to decay quickly, as ∼1/r 4, and is therefore numerically
harder to evaluate.

13



J. Phys.: Condens. Matter 19 (2007) 125215 A Paramekanti and J B Marston

Figure 6. Spin–spin correlation function of the 2D projected π -flux wavefunction for N = 4 and a
system with L2 sites. The label C(max) denotes the correlation function evaluated for points with
the maximal separation, L/

√
2, on the L × L square lattice.

The results for the finite size scaling of the staggered spin–spin correlation function are
shown in figure 6, together with the correlation function results for the 12 × 12 system. We
find that the staggered spin–spin correlation function decays as 1/rα with αs(4) = 3.0(4).
This value is in excellent agreement with large-N calculations [27, 21] that find αs(N) =
4 − 128/(3π2 N). However, the exponent αs(4) is much larger than that found in a QMC
simulation by Assaad [32]. Although the QMC calculation suggested a spin liquid ground state
of the π -flux type for the SU(4) Heisenberg model, Assaad found αs ≈ 1.12. The origin of
the large difference needs further exploration, and we speculate on a possible reason for the
discrepancy in the final section.

A numerical analysis of the dimer–dimer correlation function at Q = (π, 0) for the
N = 4 projected π -flux wavefunction yields αd(4) = 2.1(8); the larger error on the dimer–
dimer correlation function exponent stems from having fewer Monte Carlo samplings of the
wavefunction, since the dimer–dimer correlation function takes more time to evaluate. We
conclude that Gutzwiller projection strongly enhances both the spin–spin and the dimer–
dimer correlations relative to the mean-field result. In this sense, the projected π -flux state
is indeed the ‘mother of many competing orders’ [27]! However, we have not confirmed yet
that the projected π -flux wavefunction is an algebraic spin liquid phase with enlarged SU(2N)

symmetry leading to αd = αs [27]. We are currently carrying out further numerical calculations
to reduce the error bars on the exponents and to better test this prediction quantitatively.

3.3. Adding biquadratic interactions for N = 4 and 6

The inclusion of the biquadratic interaction leads to a rich phase diagram in the case of the
SU(4) spin chain. Motivated by this physics, we pursue here a variational study of the
2D square lattice model with Heisenberg bilinear and biquadratic interactions for SU(4) and
SU(6). As in 1D, the 2D model is defined by the nearest-neighbour Hamiltonian:

H4 = cos θ
∑

〈i, j〉
Sα

β (i)Sβ
α ( j) + sin θ

4

∑

〈i, j〉
[Sα

β (i)Sβ
α ( j)]2, (18)

where 〈i, j〉 refer to nearest-neighbour sites on the 2D square lattice. Exact diagonalization and
the density matrix renormalization group are inadequate tools for studying the phase diagram of
the two-dimensional model. For spin Hamiltonians without a sign problem, QMC has proved to
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be the most reliable numerical tool in 2D, but the case of a positive biquadratic spin interaction
cannot be studied reliably because it is a frustrating interaction that introduces the sign problem.
Given the success of the variational approach in 1D, we have reason to hope that the method
may also provide a good guide to two dimensions, although we explore only a limited class
of variational states. We consider the fully polarized ferromagnet FM, the (columnar) dimer
state D, the Néel antiferromagnet N , the broken charge-conjugation symmetry state C, and the
projected π -flux state 	.

FM, ferromagnet. The ground state of a fully polarized ferromagnet in 2D breaks global
SU(N) spin symmetry but no lattice symmetries. An exact ground state wavefunction may be
constructed by placing any two of the four fermion flavours on each lattice site, each site having
the same two flavours. All other ground states can be obtained by global SU(N) rotations
of this state. Exactly as in 1D, because the Pauli exclusion principle prevents any fermion
hopping in the FM state, it is straightforward to show that 〈Sα

β (i)Sβ
α (i + 1)〉 = N/4 and

〈[Sα
β (i)Sβ

α (i + 1)]2〉 = N2/16, so the exact ground state energy per site is

eexact
FM (N) = N

2
cos θ + N2

32
sin θ. (19)

D, dimer. The columnar dimer state appeared in the phase diagram of the pure bilinear
Heisenberg model and hence was discussed above in section 3.1. The only difference here is
that we minimize the energy with respect to δD at each value of θ . The energy of the perfectly
dimerized state for N = 4, 6 is

evar
D (δD = 1, N = 4) = − 5

2 cos θ + 15
4 sin θ (20)

evar
D (δD = 1, N = 6) = − 21

4 cos θ + 1197
80 sin θ. (21)

N , Néel. The Néel state with long-range antiferromagnetic order was also discussed above.
Here we minimize the energy with respect to the staggered magnetic field hN at each θ . We
emphasize that the classical antiferromagnetic state (obtained in the limit hN → ∞) has a
much higher energy than the optimal antiferromagnetic ground state at finite hN in the relevant
region of the phase diagram.

C, Charge-conjugation symmetry broken. The C phase is obtained by projecting the ground
state of the mean-field Hamiltonian

H 0
C = Hπ−flux − t∗ ∑

i,α=1...4

(−1)xi +yi

[
f †α
i fi+2x̂α + f †α

i fi+2 ŷα + h.c.
]
, (22)

the 2D generalization of equation (5). The intra-sublattice hopping t∗ gaps out the Dirac nodes
of fermionic excitations in the π -flux state and thus leads to a spin gap in the mean-field
spectrum.

	, the π -flux state. This gapless spin liquid state was also introduced earlier. This state does
not have any variational parameters and is thus the most constrained state of the wavefunctions
that we study. We leave for future work possible variational modifications of the state that
preserve all lattice and spin symmetries. (We have verified that the staggered flux state that
breaks time-reversal symmetry is never preferred energetically.) Since the π -flux state is a
gapless state, it is important to study it under conditions such as particular system sizes that
permit gapless nodes to appear at the mean-field level. We find that the phase is artificially
stabilized on lattices that do not permit the nodal wavevectors.
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Figure 7. Phase diagram of the SU(4) and SU(6) spin models of equation (18), with Heisenberg
bilinear and biquadratic interactions, on the 2D square lattice. Phases appearing here are the
Néel phase, the ferromagnet, the columnar dimer phase, the broken charge-conjugation symmetry
phase (C), and the π -flux spin liquid phase (	). The thick line labelled ‘	?’ in the N = 4
phase diagram indicates that the projected π -flux state could be stable over a thin sliver region
(0.18 < θ/π < 0.20) or, instead, there may be a direct transition at θ/π ≈ 0.19 between the Néel
and C phases. See text for details.

3.4. Phase diagram of the SU(4) spin model

We obtain the variational phase diagram shown in the left panel of figure 7 from an evaluation
of the energy of the various SU(4) states. The ground state appears to exhibit generically
broken symmetry. The D–FM, D–N and the C–FM transitions appear strongly first order
due to level crossings. As in 1D, the ground state is nearly completely dimerized at the
D–FM transition. The location of the D–FM transition is therefore simply and reliably
estimated by studying a dimer product wavefunction as the variational state for D. Setting
eexact
FM = evar

D (δD = 1) leads to θvar
D–FM ≈ tan−1(18/13) ≈ −0.7π .

Due to limits on numerical accuracy and on system sizes (up to 10 × 10 for variational op-
timization), we are unable to determine whether there is a direct N–C transition at θ/π ≈ 0.19
or a thin sliver of the π -flux phase that intervenes between these two phases for 0.18 < θ/π <

0.20. Since the Néel and C states are both deformations of the π -flux state, it is possible for a di-
rect continuous transition to occur between them, with the projected π -flux state being a possi-
ble candidate for the critical point. However the addition of variational parameter(s) to improve
short distance correlations of the projected π -flux state could in fact stabilize this state. We are
examining this issue more carefully, and comment further on this point in the final section.

3.5. Phase diagram of the SU(6) spin model

The variational phase diagram is shown in the right panel of figure 7. Strikingly, the Néel
phase is completely replaced by the dimerized phase at N = 6, and the biquadratic interaction
appears to stabilize the π -flux state over a small window of θ . Of course, within the variational
approach, one cannot rule out the possibility that 	 may be unstable to some other more
complicated or exotic broken symmetries that have not been considered.

The D–FM, D–N and the C–FM transitions appear strongly first order, again due to
level crossings. Since the ground state is nearly completely dimerized at the D–FM transition,
the location of this transition is reliably estimated by studying a dimer product wavefunction as
the variational state for D. Setting eexact

FM = evar
D (δD = 1) leads to θvar

D–FM ≈ tan−1(660/1107) ≈
−0.83π .
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4. Summary and discussion

We have used Gutzwiller projected variational wavefunctions to deduce phase diagrams of
SU(N) antiferromagnets with Heisenberg bilinear and biquadratic interactions in one and
two spatial dimensions. In one dimension, the SU(4) variational phase diagram is in very
good agreement with exact results. The spin and dimer correlations of the projected Fermi
gas wavefunction with N fermion flavours are also in reasonably good agreement with 1/N
calculations and exact results. Based on these results, the projected free fermion state with
N fermion flavours appears to provides a good approximation of the critical points of SU(N)

spin chains, and in particular it is a good description of the critical point between dimerized
and broken charge-conjugation symmetry phases in the SU(4) model.

On the two-dimensional square lattice the pure bilinear Heisenberg model exhibits Néel
order for N = 2 and 4 and columnar dimer order for N > 4. Biquadratic interactions of
positive sign appear to destabilize the Néel state, as the Néel order diminishes and gives way to
a broken charge-conjugation symmetry phase via either a small sliver of the π -flux spin liquid
or by a continuous transition that is well described by the projected π -flux state.

The spin and dimer correlations of the projected SU(4)π -flux state are in reasonable
agreement with analytical 1/N calculations. However, the spin–spin correlations are quite
different from those reported in QMC calculations by Assaad [32]. While that study finds
a spin liquid ground state for the SU(4) Heisenberg model, apparently of the π -flux type, the
spin correlations decay much more slowly than those predicted on the basis of 1/N calculations
or our variational calculation. Based on the variational study of model equation (18) with
biquadratic interactions, we find that there could either be a thin sliver of the flux phase
or a direct continuous Néel–C transition at θ/π ≈ 0.19. In the exact phase diagram, this
transition point, or the sliver of the flux phase, might occur even closer to the pure bilinear
Heisenberg point. If this in fact is the case, a continuous Néel–C transition with a π -flux
state at the transition point (or a direct Néel–	 transition if a region of stable π -flux spin
liquid exists) could strongly influence the ground state of the pure SU(4) Heisenberg model
as studied by QMC [32]. This hypothesis suggests that it may be numerically difficult to tell
whether the correct ground state of the SU(4) Heisenberg model is a π -flux spin liquid or
a Néel ground state with a much reduced staggered magnetization. It could also account for
the discrepancy in the spin correlations between the QMC on the one hand and the 1/N and
variational calculations on the other. Further studies of the SU(4) Heisenberg model with
biquadratic interactions might shed light on this issue.

The SU(6) model does not appear to support a Néel phase at all. Instead, biquadratic
interactions open up a small window of π -flux phase between the dimerized and broken
charge-conjugation symmetry phases. We checked for instabilities of the π -flux state towards
Néel order (characterized by nonzero 〈Sα

β (i)〉), dimer order (modulations in 〈Tr S(i)S( j)〉)
and C-breaking (modulations in 〈Tr S(i)S( j)S(k)〉) and found it to be stable against all
three. However, we cannot rule out instabilities towards other more exotic broken symmetries
characterized by more complicated order parameters. While the dimerized ground state at the
Heisenberg point also appears to be close to a spin liquid phase from our phase diagram, it is
less likely to be influenced by proximity to such a critical point, as the dimerized phase has a
spin gap rendering it more stable to critical fluctuations than the Néel phase. This picture is
consistent with Assaad’s QMC results, with a dimerized ground state reported for the SU(6)

Heisenberg model.
Finally, an exact C-breaking ground state of a 2D SU(8) spin model is known at a special

point in parameter space [10] and it could be used as an additional test of the variational
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approach, which we have shown to be quite successful in describing a wide class of SU(N)

antiferromagnets in one and two dimensions.
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[54] Harada K, Kawashima N and Troyer M 2003 Néel and spin-Peierls ground states of two-dimensional SU(N)
quantum antiferromagnets Phys. Rev. Lett. 90 117203

20

http://dx.doi.org/10.1103/PhysRevB.41.4552
http://dx.doi.org/10.1103/PhysRevLett.62.1694
http://dx.doi.org/10.1103/PhysRevB.42.4568
http://dx.doi.org/10.1103/PhysRevLett.90.117203

	1. Introduction
	2. One dimension
	2.1. Models
	2.2. Phase diagram of the SU\(4\) model
	2.3. Correlation functions for the projected Fermi gas at various N

	3. Two-dimensional square lattice
	3.1. Phase diagram of the SU\(N\) Heisenberg model
	3.2. Correlation functions of the projected SU\(4\)pi -flux state
	3.3. Adding biquadratic interactions for N=4 and 6
	3.4. Phase diagram of the SU\(4\) spin model
	3.5. Phase diagram of the SU\(6\) spin model

	4. Summary and discussion
	Acknowledgments
	References

